811 research outputs found

    Microscopic theory of the Andreev gap

    Full text link
    We present a microscopic theory of the Andreev gap, i.e. the phenomenon that the density of states (DoS) of normal chaotic cavities attached to superconductors displays a hard gap centered around the Fermi energy. Our approach is based on a solution of the quantum Eilenberger equation in the regime tD≪tEt_D\ll t_E, where tDt_D and tEt_E are the classical dwell time and Ehrenfest-time, respectively. We show how quantum fluctuations eradicate the DoS at low energies and compute the profile of the gap to leading order in the parameter tD/tEt_D/t_E .Comment: 4 pages, 3 figures; revised version, more details, extra figure, new titl

    Physics of Proximity Josephson Sensor

    Full text link
    We study the proximity Josephson sensor (PJS) in both bolometric and calorimetric operation and optimize it for different temperature ranges between 25 mK and a few Kelvin. We investigate how the radiation power is absorbed in the sensor and find that the irradiated sensor is typically in a weak nonequilibrium state. We show in detail how the proximity of the superconductors affects the device response: for example via changes in electron-phonon coupling and out-of-equilibrium noise. In addition, we estimate the applicability of graphene as the absorber material.Comment: 13 pages, 11 figures, submitted to Journal of Applied Physics, v2: Addition of a new section discussing the radiation coupling to the device, several minor change

    Civil engineering status report for the ATLAS & CMS worksites

    Get PDF
    Construction work on the civil engineering contracts at Point 1 and Point 5 started in 1998. The new surface buildings and underground structures are necessary to accommodate the ATLAS and CMS detectors for the LHC Project. The principal underground works at both points consist of two new shafts, two caverns along with a number of small connection tunnels and galleries. At Point 1, the works are 90% complete. Most of the surface buildings as well as the shafts and one of the two new caverns have been completed, and the construction of the second cavern is well underway. At Point 5, the works are 70% complete. Most of the surface buildings as well as the shafts and the pillar have been completed. With excavation of the two large caverns complete, the concreting of the final linings has started. The aim of this paper is to present the status of the civil engineering on these worksites and in particular the challenges encountered constructing the experimental caverns

    Resonant spin polarization and spin current in a two-dimensional electron gas

    Full text link
    We study the spin polarization and its associated spin-Hall current due to EDSR in disordered two-dimensional electron systems. We show that the disorder induced damping of the resonant spin polarization can be strongly reduced by an optimal field configuration that exploits the interference between Rashba and Dresselhaus spin-orbit interaction. This leads to a striking enhancement of the spin susceptibility while the spin-Hall current vanishes at the same time. We give an interpretation of the spin current in geometrical terms which are associated with the trajectories the polarization describes in spin space.Comment: (5 pages), updated references, corrected typo

    Evaluation of Upper Extremity Movement Characteristics during Standardized Pediatric Functional Assessment with a Kinect®-based Markerless Motion Analysis System

    Get PDF
    A recently developed and evaluated upper extremity (UE) markerless motion analysis system based on the Microsoft® Kinect® has potential for improving functional assessment of patients with hemiplegic cerebral palsy. 12 typically-developing adolescents ages 12-17 were evaluated using both the Kinect-based system and the Shriners Hospitals for Children Upper Extremity Evaluation (SHUEE), a validated measure of UE motion. The study established population means of UE kinematic parameters for each activity. Statistical correlation analysis was used to identify key kinematic metrics used to develop automatic scoring algorithms. The Kinect motion analysis platform is technically sound and can be applied to standardized task-based UE evaluation while providing enhanced sensitivity in clinical analysis and automation through scoring algorithms

    Theory of temperature fluctuation statistics in superconductor-normal metal tunnel structures

    Full text link
    We describe the statistics of temperature fluctuations in a SINIS structure, where a normal metal island (N) is coupled by tunnel junctions (I) to two superconducting leads (S). We specify conditions under which this structure exhibits manifestly non-Gaussian fluctuations of temperature. We consider both the Gaussian and non-Gaussian regimes of these fluctuations, and the current fluctuations that are caused by the fluctuating temperature. We also describe a measurement setup that could be used to observe the temperature fluctuations.Comment: 10 pages, 9 figures, final versio

    Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics

    Full text link
    We study transport through an electronic Mach-Zehnder interferometer recently devised at the Weizmann Institute. We show that this device can be used to probe statistics of quasiparticles in the fractional quantum Hall regime. We calculate the tunneling current through the interferometer as the function of the Aharonov-Bohm flux, temperature and voltage bias, and demonstrate that its flux-dependent component is strongly sensitive to the statistics of tunneling quasiparticles. More specifically, the flux-dependent and flux-independent contributions to the current are related by a power law, the exponent being a function of the quasiparticle statistics.Comment: 22 pages; 8 figure

    Absence of weak antilocalization in ferromagnetic films

    Full text link
    We present magnetoresistance measurements performed on ultrathin films of amorphous Ni and Fe. In these films the Curie temperature drops to zero at small thickness, making it possible to study the effect of ferromagnetism on localization. We find that non-ferromagnetic films are characterized by positive magnetoresistance. This is interpreted as resulting from weak antilocalization due to strong Bychkov-Rashba spin orbit scattering. As the films become ferromagnetic the magnetoresistance changes sign and becomes negative. We analyze our data to identify the individual contributions of weak localization, weak antilocalization and anisotropic magnetoresistance and conclude that the magnetic order suppresses the influence of spin-orbit effects on localization phenomena in agreement with theoretical predictions.Comment: 6 pages, 6 figure

    Weak localization effects in granular metals

    Full text link
    The weak localization correction to the conductivity of a granular metal is calculated using the diagrammatic technique in the reciprocal grain lattice representation. The properties of this correction are very similar to that one in disordered metal, with the replacement of the electron mean free path ℓ\ell by the grain diameter dd and the dimensionless conductance gg by the tunnelling dimensionless conductance gTg_{T}. In particular, we demonstrate that at zero temperature no conducting phase can exist for dimensions D≤2D\leq 2. We also analyze the WL correction to magnetoconductivity in the weak field limit.Comment: 4 pages, 3 figures; minor corrections adde
    • …
    corecore